Effects of Deuterium Depletion on Age-Declining Thymopoiesis In Vivo

Author:

Yaglova Nataliya V.1ORCID,Obernikhin Sergey S.1,Timokhina Ekaterina P.1ORCID,Tsomartova Dibakhan A.12,Yaglov Valentin V.1,Nazimova Svetlana V.1,Tsomartova Elina S.12,Ivanova Marina Y.2,Chereshneva Elizaveta V.2ORCID,Lomanovskaya Tatiana A.2

Affiliation:

1. Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia

2. Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia

Abstract

The thymus provides maturation and migration of T cells to peripheral organs of immunity, where they recognize diverse antigens and maintain immunological memory and self-tolerance. The thymus is known to be involved with age and in response to stress factors. Therefore, the search for approaches to the restoration of thymopoiesis is of great interest. The present investigation was aimed at evaluating how prolonged deuterium depletion affects morphogenetic processes and the physiological transition of the thymus to age-related involution. The study was performed on 60 male Wistar rats subjected to consumption of deuterium-depleted water with a 10 ppm deuterium content for 28 days. The control rats consumed distilled water with a normal deuterium content of 150 ppm. The examination found no significant differences in body weight gain or the amount of water consumed. The exposed rats exhibited similar to control dynamics of the thymus weight but significant changes in thymic cell maturation according to cytofluorimetric analysis of thymic subpopulations. Changes in T cell production were not monotonic and differentially engaged morphogenetic processes of cell proliferation, differentiation, and migration. The reactive response to deuterium depletion was a sharp increase in the number of progenitor CD4−CD8− cells and their differentiation into T cells. The compensatory reaction was inhibition of thymopoiesis with more pronounced suppression of differentiation of T-cytotoxic lymphocytes, followed by intensification of emigration of mature T cells to the bloodstream. This period lasts from 3 to 14 days, then differentiation of thymic lymphocytes is restored, later cell proliferation is activated, and finally the thymopoiesis rate exceeds the control values. The increase in the number of thymic progenitor cells after 3–4 weeks suggests consideration of deuterium elimination as a novel approach to prevent thymus involution.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3