Thymus-autonomous T cell development in the absence of progenitor import

Author:

Martins Vera C.1,Ruggiero Eliana2,Schlenner Susan M.3,Madan Vikas4,Schmidt Manfred2,Fink Pamela J.5,von Kalle Christof2,Rodewald Hans-Reimer6

Affiliation:

1. Institute for Immunology, University of Ulm, D-89081 Ulm, Germany

2. Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, D-69120 Heidelberg, Germany

3. Department for Cancer Immunology and AIDS, Dana-Farber Cancer Institute Boston, MA 02115

4. Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore

5. Department of Immunology, University of Washington, Seattle, WA 98195

6. Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany

Abstract

Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3