Calsarcin-2 May Play a Compensatory Role in the Development of Obese Sarcopenia

Author:

Liang Yu-Cheng1ORCID,Cheng Kai-Pi1,Kuo Hsin-Yu1ORCID,Wang Chung-Teng2,Chou Hsuan-Wen1,Huang Kuan-Lin3,Wu Hung-Tsung2ORCID,Ou Horng-Yih123

Affiliation:

1. Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan

2. Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan

3. Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan

Abstract

Although obese sarcopenia is a major public health problem with increasing prevalence worldwide, the factors that contribute to the development of obese sarcopenia are still obscure. In order to clarify this issue, a high-fat-diet-induced obese sarcopenia mouse model was utilized. After being fed with a high-fat diet for 24 weeks, decreased motor functions and muscle mass ratios were found in the C57BL/6 mice. In addition, the expression of calsarcin-2 was significantly increased in their skeletal muscle, which was determined by a microarray analysis. In order to clarify the role of calsarcin-2 in muscle, lentiviral vectors containing the calsarcin-2 gene or short hairpin RNA targeted to calsarcin-2 were used to manipulate calsarcin-2 expressions in L6 myoblasts. We found that an overexpression of calsarcin-2 facilitated L6 myoblast differentiation, whereas a calsarcin-2 knockdown delayed myoblast differentiation, as determined by the expression of myogenin. However, the calsarcin-2 knockdown showed no significant effects on myoblast proliferation. In addition, to clarify the relationship between serum calsarcin-2 and sarcopenia, the bilateral gastrocnemius muscle mass per body weight in mice and appendicular skeletal muscle mass index in humans were measured. Although calsarcin-2 facilitated myoblast differentiation, the serum calsarcin-2 concentration was negatively related to skeletal muscle mass index in mice and human subjects. Taken together, calsarcin-2 might facilitate myoblast differentiation and appear to play a compensatory role in sarcopenia.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3