Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate—Influence on Rehydration Protocol and Angiogenesis

Author:

Blatt Sebastian,Schröger Saskia-Vanessa,Pabst Andreas,Kämmerer Peer W.ORCID,Sagheb Keyvan,Al-Nawas BilalORCID

Abstract

Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3