Platelet-rich fibrin for rehydration and pre-vascularization of an acellular, collagen membrane of porcine origin

Author:

Schröger Saskia-Vanessa,Blatt Sebastian,Sagheb Kawe,Al-Nawas Bilal,Kämmerer Peer W.,Sagheb Keyvan

Abstract

Abstract Objectives Pre-vascularization of the collagen membranes with autologous platelet concentrates is a standard procedure in oral and maxillofacial surgery. This study analyzed the possible interaction of an acellular collagen membrane of porcine origin (NM) with platelet-rich fibrin (PRF) regarding its rehydration protocol with differences in pH values and effect on angiogenesis. Materials and methods NM was analyzed alone and combined with solid PRF by plotting or co-culturing with injectable PRF. Different media (venous blood, buffer solution with a fixed pH value of 7, saline solution, and injectable PRF) were used to analyze the influence on pH value during rehydration. Chorion allantois membrane assay (CAM) was applied to check pro-angiogenic effects after 24, 48, and 72 h, followed by immunohistochemical analysis. Results Rehydration in injectable PRF showed acidity over time (p < 0.05). A definite pro-angiogenic effect of NM alone was found regarding neo-vessel formation supported by the respective light microscopically analysis without significant differences to PRF alone (p > 0.005). This pro-angiogenic effect could not be exaggerated when NM was combined with liquid/solid PRF (each p > 0.005). Conclusions Rehydration with liquid PRF of the collagen membrane results in acidity compared to a saline solution or patient’s blood. The significant pro-angiogenic potential of the membrane alone resulted in enhanced neo-vessel formation that could not be optimized with the addition of PRF. Clinical relevance statement Using injectable PRF for rehydration protocol of the collagen membrane leads to acidosis that can ultimately optimize wound healing. Differences in the physio-mechanical interplay of collagen matrices and autologous platelet concentrates must result in clinical algorithms if pre-vascularization can maximize outcomes.

Funder

Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3