Inhibition of Aminoglycoside 6′-N-acetyltransferase Type Ib (AAC(6′)-Ib): Structure–Activity Relationship of Substituted Pyrrolidine Pentamine Derivatives as Inhibitors

Author:

Rocha Kenneth,Magallon Jesus,Reeves Craig,Phan Kimberly,Vu Peter,Oakley-Havens Crista L.,Kwan Stella,Ramirez Maria SoledadORCID,LaVoi Travis,Donow Haley,Chapagain PremORCID,Santos Radleigh,Pinilla Clemencia,Giulianotti Marc A.,Tolmasky Marcelo E.ORCID

Abstract

The aminoglycoside 6′-N-acetyltransferase type Ib (AAC(6′)-Ib) is a common cause of resistance to amikacin and other aminoglycosides in Gram-negatives. Utilization of mixture-based combinatorial libraries and application of the positional scanning strategy identified an inhibitor of AAC(6′)-Ib. This inhibitor’s chemical structure consists of a pyrrolidine pentamine scaffold substituted at four locations (R1, R3, R4, and R5). The substituents are two S-phenyl groups (R1 and R4), an S-hydroxymethyl group (R3), and a 3-phenylbutyl group (R5). Another location, R2, does not have a substitution, but it is named because its stereochemistry was modified in some compounds utilized in this study. Structure–activity relationship (SAR) analysis using derivatives with different functionalities, modified stereochemistry, and truncations was carried out by assessing the effect of the addition of each compound at 8 µM to 16 µg/mL amikacin-containing media and performing checkerboard assays varying the concentrations of the inhibitor analogs and the antibiotic. The results show that: (1) the aromatic functionalities at R1 and R4 are essential, but the stereochemistry is essential only at R4; (2) the stereochemical conformation at R2 is critical; (3) the hydroxyl moiety at R3 as well as stereoconformation are required for full inhibitory activity; (4) the phenyl functionality at R5 is not essential and can be replaced by aliphatic groups; (5) the location of the phenyl group on the butyl carbon chain at R5 is not essential; (6) the length of the aliphatic chain at R5 is not critical; and (7) all truncations of the scaffold resulted in inactive compounds. Molecular docking revealed that all compounds preferentially bind to the kanamycin C binding cavity, and binding affinity correlates with the experimental data for most of the compounds evaluated. The SAR results in this study will serve as the basis for the design of new analogs in an effort to improve their ability to induce phenotypic conversion to susceptibility in amikacin-resistant pathogens.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference41 articles.

1. Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae , United States 2016

2. Bad bugs, no drugs 2002–2020: Progress, challenges, and call to action;Boucher;Trans. Am. Clin. Climatol Assoc.,2020

3. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics,2017

4. Strategies to prolong the useful life of existing antibiotics and help overcoming the antibiotic resistance crisis;Tolmasky,2017

5. New β-Lactamase Inhibitors in the Clinic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3