Targeted Protein Degradation to Overcome Resistance in Cancer Therapies: PROTAC and N-Degron Pathway

Author:

Kim Hanbyeol,Park Jeongbae,Kim Jeong-MokORCID

Abstract

Extensive progress in understanding the molecular mechanisms of cancer growth and proliferation has led to the remarkable development of drugs that target cancer-driving molecules. Most target molecules are proteins such as kinases and kinase-associated receptors, which have enzymatic activities needed for the signaling cascades of cells. The small molecule inhibitors for these target molecules greatly improved therapeutic efficacy and lowered the systemic toxicity in cancer therapies. However, long-term and high-dosage treatment of small inhibitors for cancer has produced other obstacles, such as resistance to inhibitors. Among recent approaches to overcoming drug resistance to cancers, targeted protein degradation (TPD) such as proteolysis-targeting chimera (PROTAC) technology adopts a distinct mechanism of action by which a target protein is destroyed through the cellular proteolytic system, such as the ubiquitin–proteasome system or autophagy. Here, we review the currently developed PROTACs as the representative TPD molecules for cancer therapy and the N-degrons of the N-degron pathways as the potential TPD ligands.

Funder

National Research Foundation of Korea

Hanyang University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3