Hybridized Deep Learning Approach for Detecting Alzheimer’s Disease

Author:

Balaji Prasanalakshmi,Chaurasia Mousmi Ajay,Bilfaqih Syeda Meraj,Muniasamy AnandhavalliORCID,Alsid Linda Elzubir Gasm

Abstract

Alzheimer’s disease (AD) is mainly a neurodegenerative sickness. The primary characteristics are neuronal atrophy, amyloid deposition, and cognitive, behavioral, and psychiatric disorders. Numerous machine learning (ML) algorithms have been investigated and applied to AD identification over the past decades, emphasizing the subtle prodromal stage of mild cognitive impairment (MCI) to assess critical features that distinguish the disease’s early manifestation and instruction for early detection and treatment. Identifying early MCI (EMCI) remains challenging due to the difficulty in distinguishing patients with cognitive normality from those with MCI. As a result, most classification algorithms for these two groups perform poorly. This paper proposes a hybrid Deep Learning Approach for the early detection of Alzheimer’s disease. A method for early AD detection using multimodal imaging and Convolutional Neural Network with the Long Short-term memory algorithm combines magnetic resonance imaging (MRI), positron emission tomography (PET), and standard neuropsychological test scores. The proposed methodology updates the learning weights, and Adam’s optimization is used to increase accuracy. The system has an unparalleled accuracy of 98.5% in classifying cognitively normal controls from EMCI. These results imply that deep neural networks may be trained to automatically discover imaging biomarkers indicative of AD and use them to identify the illness accurately.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3