A Modified Bio-Inspired Optimizer with Capsule Network for Diagnosis of Alzheimer Disease

Author:

Ganesan Praveena1,Ramesh G. P.1ORCID,Puttamdappa C.2ORCID,Anuradha Yarlagadda3ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, St. Peter’s Institute of Higher Education and Research, Chennai 600077, India

2. Department of Electronics and Communication Engineering, Dayananda Sagar University, Bengaluru 560068, India

3. Department of Computer Science and Engineering, Gayatri Vidya Parishad College of Engineering (A), Visakhapatnam 530048, India

Abstract

Recently, Alzheimer’s disease (AD) is one of the common neurodegenerative disorders, which primarily occurs in old age. Structural magnetic resonance imaging (sMRI) is an effective imaging technique used in clinical practice for determining the period of AD patients. An efficient deep learning framework is proposed in this paper for AD detection, which is inspired from clinical practice. The proposed deep learning framework significantly enhances the performance of AD classification by requiring less processing time. Initially, in the proposed framework, the sMRI images are acquired from a real-time dataset and two online datasets including Australian Imaging, Biomarker and Lifestyle flagship work of ageing (AIBL), and Alzheimer’s Disease Neuroimaging Initiative (ADNI). Next, a fuzzy-based superpixel-clustering algorithm is introduced to segment the region of interest (RoI) in sMRI images. Then, the informative deep features are extracted in segmented RoI images by integrating the probabilistic local ternary pattern (PLTP), ResNet-50, and Visual Geometry Group (VGG)-16. Furthermore, the dimensionality reduction is accomplished by through the modified gorilla troops optimizer (MGTO). This process not only enhances the classification performance but also diminishes the processing time of the capsule network (CapsNet), which is employed to classify the classes of AD. In the MGTO algorithm, a quasi-reflection-based learning (QRBL) process is introduced for generating silverback’s quasi-refraction position for further improving the optimal position’s quality. The proposed fuzzy based superpixel-clustering algorithm and MGTO-CapsNet model obtained a pixel accuracy of 0.96, 0.94, and 0.98 and a classification accuracy of 99.88%, 96.38%, and 99.94% on the ADNI, real-time, and AIBL datasets, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3