Rapid Land Cover Classification Using a 36-Year Time Series of Multi-Source Remote Sensing Data

Author:

Yan Xingguang123ORCID,Li Jing1,Smith Andrew R.23ORCID,Yang Di4ORCID,Ma Tianyue1,Su Yiting123

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK

3. Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK

4. Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA

Abstract

Long time series land cover classification information is the basis for scientific research on urban sprawls, vegetation change, and the carbon cycle. The rapid development of cloud computing platforms such as the Google Earth Engine (GEE) and access to multi-source satellite imagery from Landsat and Sentinel-2 enables the application of machine learning algorithms for image classification. Here, we used the random forest algorithm to quickly achieve a time series land cover classification at different scales based on the fixed land classification sample points selected from images acquired in 2022, and the year-by-year spectral differences of the sample points. The classification accuracy was enhanced by using multi-source remote sensing data, such as synthetic aperture radar (SAR) and digital elevation model (DEM) data. The results showed that: (i) the maximum difference (threshold) of the sample points without land class change, determined by counting the sample points of each band of the Landsat time series from 1986 to 2022, was 0.25; (ii) the kappa coefficient and observed accuracy of the same sensor from Landsat 8 are higher than the results of the TM and ETM+ sensor data from 2013 to 2022; and (iii) the addition of a mining land cover type increases the kappa coefficient and overall accuracy mean values of the Sentinel 2 image classification for a complex mining and forest area. Among the land classifications via multi-source remote sensing, the combined variables of Spectral band + Index + Terrain + SAR result in the highest accuracy, but the overall improvement is limited. The method proposed is applicable to remotely sensed images at different scales and the use of sensors under complex terrain conditions. The use of the GEE cloud computing platform enabled the rapid analysis of remotely sensed data to produce land cover maps with high accuracy and a long time series.

Funder

National Key Research and Development Program of China

Royal Society International Exchanges 2022 Cost Share

University-Industry Collaborative Education Program

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3