Practical Guidelines for Approaching the Implementation of Neural Networks on FPGA for PAPR Reduction in Vehicular Networks

Author:

Louliej Abdelhamid,Jabrane Younes,Gil Jiménez Víctor P.,García Armada AnaORCID

Abstract

Nowadays, the sensor community has become wireless, increasing their potential and applications. In particular, these emerging technologies are promising for vehicles’ communications (V2V) to dramatically reduce the number of fatal roadway accidents by providing early warnings. The ECMA-368 wireless communication standard has been developed and used in wireless sensor networks and it is also proposed to be used in vehicular networks. It adopts Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) technology to transmit data. However, the large power envelope fluctuation of OFDM signals limits the power efficiency of the High Power Amplifier (HPA) due to nonlinear distortion. This is especially important for mobile broadband wireless and sensors in vehicular networks. Many algorithms have been proposed for solving this drawback. However, complexity and implementations are usually an issue in real developments. In this paper, the implementation of a novel architecture based on multilayer perceptron artificial neural networks on a Field Programmable Gate Array (FPGA) chip is evaluated and some guidelines are drawn suitable for vehicular communications. The proposed implementation improves performance in terms of Peak to Average Power Ratio (PAPR) reduction, distortion and Bit Error Rate (BER) with much lower complexity. Two different chips have been used, namely, Xilinx and Altera and a comparison is also provided. As a conclusion, the proposed implementation allows a minimal consumption of the resources jointly with a higher maximum frequency, higher performance and lower complexity.

Funder

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3