Finite Element Analysis and Near-Infrared Hyperspectral Reflectance Imaging for the Determination of Blueberry Bruise Grading

Author:

Zheng ZhaoqiORCID,An Zimin,Liu Xinyu,Chen Jinghui,Wang Yonghong

Abstract

Bruising of the subcutaneous tissues of blueberries is an important form of mechanical damage. Different levels of bruising have a significant effect on the post-harvest marketing of blueberries. To distinguish different grades of blueberry bruises and explore the effects of different factors, explicit dynamic simulation and near-infrared hyperspectral reflectance imaging were employed without harming the blueberries in this study. Based on the results of the compression experiment, an explicit dynamic simulation of blueberries was performed to measure the potential locations of bruises and preliminarily divide the bruise stages. A near-infrared hyperspectral reflectance imaging system was used to detect the actual blueberry bruises. According to the blueberry photos taken by the near-infrared hyperspectral reflectance imaging system, the actual bruise rates of blueberries were obtained by using the Environment for Visualizing Images software for training and classification. Bruise grades of blueberries were divided accordingly. Response surface methodology was used to determine the effects of ripeness, loading speed and loading location on the blueberry bruising rate. Under the optimized parameters, the actual damage rate of blueberries was 1.1%. The results provide an important theoretical basis for the accurate and rapid identification and classification of blueberry bruise damage.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3