Blueberry bruise non-destructive detection based on hyperspectral information fusion combined with multi-strategy improved Beluga Whale Optimization algorithm

Author:

Sun Xiaoxiong,Zhu Liangkuan,Liu Dayang

Abstract

IntroductionMechanical damage significantly reduces the market value of fruits, making the early detection of such damage a critical aspect of agricultural management. This study focuses on the early detection of mechanical damage in blueberries (variety: Sapphire) through a non-destructive method.MethodsThe proposed method integrates hyperspectral image fusion with a multi-strategy improved support vector machine (SVM) model. Initially, spectral features and image features were extracted from the hyperspectral information using the successive projections algorithm (SPA) and Grey Level Co-occurrence Matrix (GLCM), respectively. Different models including SVM, RF (Random Forest), and PLS-DA (Partial Least Squares Discriminant Analysis) were developed based on the extracted features. To refine the SVM model, its hyperparameters were optimized using a multi-strategy improved Beluga Whale Optimization (BWO) algorithm. ResultsThe SVM model, upon optimization with the multi-strategy improved BWO algorithm, demonstrated superior performance, achieving the highest classification accuracy among the models tested. The optimized SVM model achieved a classification accuracy of 95.00% on the test set. DiscussionThe integration of hyperspectral image information through feature fusion proved highly efficient for the early detection of bruising in blueberries. However, the effectiveness of this technology is contingent upon specific conditions in the detection environment, such as light intensity and temperature. The high accuracy of the optimized SVM model underscores its potential utility in post-harvest assessment of blueberries for early detection of bruising. Despite these promising results, further studies are needed to validate the model under varying environmental conditions and to explore its applicability to other fruit varieties.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3