Inhibitory Mechanism of Advanced Glycation End-Product Formation by Avenanthramides Derived from Oats through Scavenging the Intermediates

Author:

Zhu Pei,Zhang Ying,Zhang DianweiORCID,Han Luxuan,Liu HuilinORCID,Sun Baoguo

Abstract

As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety of biological activities, and plays an important role in the prevention and treatment of common chronic diseases. In this study, the optimum extraction conditions and structural identification of AVAs from oats was studied. The inhibitory effect of AVAs from oats on advanced glycation end-products (AGEs) in a glucose–casein simulation system was evaluated, and this revealed dose-dependent inhibitory effects. The trapping capacity of AVAs to the α-dicarbonyl compounds of AGE intermediate products was determined by HPLC–MS/MS, and the results indicate that AVA 2c, AVA 2p, and AVA 2f exhibited the ability to capture α-dicarbonyl compounds. More importantly, AVA 2f was found to be more efficient than AVA 2p at inhibiting superoxide anion radical (O2−), hydroxyl radical (OH), and singlet oxygen (1O2) radical generation, which may be the main reason that AVA 2f was more efficient than AVA 2p in AGE inhibition. Thus, this research presents a promising application of AVAs from oats in inhibiting the food-borne AGEs formed in food processing.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3