Optimization of Ultrasonic-Assisted Bioactive Compound Extraction from Green Soybean (Glycine max L.) and the Effect of Drying Methods and Storage Conditions on Procyanidin Extract

Author:

Khonchaisri Rattanaporn,Sumonsiri NutsudaORCID,Prommajak Trakul,Rachtanapun PornchaiORCID,Leksawasdi Noppol,Techapun Charin,Taesuwan Siraphat,Halee Anek,Nunta Rojarej,Khemacheewakul JulalukORCID

Abstract

Green soybean (Glycine max L.) seeds (GSS) are rich in various antioxidants and phytonutrients that are linked to various health benefits. Ultrasound-assisted extraction (UAE) technology was used for extracting the effective components from GSS. A response surface method (RSM) was used to examine the influence of liquid-to-solid ratio and extraction temperature on the bioactive compounds and antioxidant characteristics. The optimal conditions were a liquid-to-solid ratio of 25:1 and a UAE temperature of 40 °C. The observed values coincided well with the predicted values under optimal conditions. Additionally, the effects of drying methods on the procyanidins and antioxidant activities of GSS extract were evaluated. The spray-dried GSS extract contained the highest levels of procyanidins (21.4 ± 0.37 mg PC/g), DPPH (199 ± 0.85 µM Trolox eq/g), and FRAP (243 ± 0.26 µM Trolox eq/g). Spray drying could be the most time- and energy-efficient technique for drying the GSS extract. The present study also assessed the effects of storage temperature and time on procyanidins and antioxidant activities in GSS extract powder. Procyanidins were found to degrade more rapidly at 45 °C than at 25 °C and 35 °C. Storage under 25 °C was appropriate for maintaining the procyanidin contents, DPPH, and FRAP activities in the GSS extract powder. This study contributed to the body of knowledge by explaining the preparation of procyanidin extract powder from GSS, which might be employed as a low-cost supply of nutraceutical compounds for the functional food industry and pharmaceutical sector.

Funder

CMU Junior Research Fellowship Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3