Investigations on Backflush Cleaning of Spent Grain-Contaminated Filter Cloths Using Continuous and Pulsed Jets

Author:

Werner Roman AlejandroORCID,Hummel Alexander Michael,Geier Dominik UlrichORCID,Becker Thomas

Abstract

This study investigated the continuous and pulsed backflush cleaning of woven fabrics that act as filter media in the food and beverage industry. Especially in breweries, they are commonly used in mash filters to separate solid spent grains from liquid wort. After filtration, the removal of such cereal residues via self-discharge is necessary. However, this filter cake discharge is typically incomplete, and various spots remain contaminated. In addition to the reduced filter performance of subsequent batches, cross-contamination risk increases significantly. A reproducible contamination method focusing on the use case of a mash filter was developed for this study. Additionally, a residue analysis based on microscopical image processing helped to assess cleaning efficiency. The experimental part compared two backflushing procedures for mash filters and demonstrated fluid dynamical, procedural, and economic differences in cleaning. Specifically, pulsed jets show higher efficiency in reaching cleanliness faster, with fewer cleaning agents and less time. According to the experimental results, the fluid flow conditions depended highly on cloth geometry and mesh sizes. Larger mesh sizes significantly favored the cloth’s cleanability as a larger backflush volume can reach contamination. With these results, cloth cleaning can be improved, enabling the realization of demand-oriented cleaning concepts.

Funder

Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference38 articles.

1. Handbook of Technical Textiles: Volume 1: Technical Textile Processes;Horrocks,2016

2. Solid-Liquid Filtration and Separation Technology;Rushton,1996

3. Surface modifications – Application potential for the reduction of cleaning costs in the food processing industry

4. Solid/Liquid Separation: Equipment Selection and Process Design;Tarleton,2006

5. A Microbiological Test Method to Determine the Cleanability of Filter Media in Solid-Liquid-Separation Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3