Systematic Investigation on the Glass Transition Temperature of Binary and Ternary Sugar Mixtures and the Applicability of Gordon–Taylor and Couchman–Karasz Equation

Author:

Schugmann Martin,Foerst PetraORCID

Abstract

Glass transition temperatures (Tg) of carbohydrate mixtures consisting of only one monomer and glycosidic binding type (aldohexose glucose, α1-4-glycosidic bonded) were studied by differential scanning calorimetry (DSC). The aim of this work was to systematically assess the predictability of Tg of anhydrous binary and ternary sugar mixtures focusing on the components Tg, molecular chain length, and shape. Binary systems were investigated with glucose as a monosaccharide and its linear di-, tri-, tetra-, penta-, hexa-, and heptasaccharides. Additionally, the Tg of ternary carbohydrate systems prepared with different glucose/maltose/maltotriose mass fractions were studied to evaluate the behavior of more complex mixtures. An experimental method to prepare fully amorphized, anhydrous mixtures were developed which allows the analysis of mixtures with strongly different thermodynamic pure-component properties (Tg, melting temperature, and degradation). The mixtures’ Tg is systematically underestimated by means of the Couchman–Karasz model. A systematic, sigmoidal deviation behavior from the Gordon–Taylor model could be found, which we concluded is specific for the investigated glucopolymer mixtures. At low concentrations of small molecules, the model underestimates Tg, meeting the experimental values at about equimolarity, and overestimates Tg at higher concentrations. These deviations become more pronounced with increasing Tg differences and were explained by a polymer mixture-specific, nonlinear plasticizing/thermal volume expansion effect.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3