Quantitative Bio-Mapping of Salmonella and Indicator Organisms at Different Stages in a Commercial Pork Processing Facility

Author:

Bueno López RossyORCID,Vargas David A.ORCID,Jimenez Reagan L.,Casas Diego E.ORCID,Miller Markus F.,Brashears Mindy M.,Sanchez-Plata Marcos X.

Abstract

The purpose of this study was to develop a quantitative baseline of indicator organisms and Salmonella by bio-mapping throughout the processing chain from harvest to final product stages within a commercial conventional design pork processing establishment. Swab samples were taken on the harvest floor at different processing steps, gambrel table, after polisher, before final rinse, after the final rinse, post snap chill, and after peroxyacetic acid (PAA) application, while 2-pound product samples were collected for trim and ground samples. The samples were subjected to analysis for indicator microorganism enumeration, Aerobic Count (AC), Enterobacteriaceae (EB), and generic Escherichia coli (EC), with the BioMérieux TEMPO®. Salmonella prevalence and enumeration was evaluated using the BAX® System Real-Time Salmonella and the SalQuant™ methodology. Microbial counts were converted to Log Colony-forming units (CFU) on a per mL, per g or per sample basis, presented as LogCFU/mL, LogCFU/g and LogCFU/sample, prior to statistical analysis. All indicator microorganisms were significantly reduced at the harvest floor (p-value < 0.001), from gambrel table to after PAA cabinet location. The reduction at harvest was 2.27, 2.46 and 2.24 LogCFU/mL for AC, EB and EC, respectively. Trim sample values fluctuated based on cut, with the highest average AC count found at neck trim (2.83 LogCFU/g). Further process samples showed the highest AC count in sausage with a mean of 5.28 LogCFU/g. EB counts in sausage (3.19 LogCFU/g) showed an evident increase, compared to the reduction observed at the end of harvest and throughout trim processing. EC counts showed a similar trend to EB counts with the highest value found in sausage links (1.60 LogCFU/g). Statistical microbial process control (SPC) parameters were also developed for each of the indicator microorganisms, using the overall mean count (X=), the Lower control limit (LCL) and Upper control limit (UCL) at each sampling location. For Salmonella prevalence, a total of 125/650 samples were found positive (19%). From those positive samples, 47 samples (38%) were suitable for enumeration using the BAX® System SalQuant™, the majority detected at the gambrel table location. From those enumerable samples, 60% were estimated to be between 0.97 and 1.97 LogCFU/sample, while the rest (40%) were higher within the 2.00–4.02 LogCFU/sample range. This study provides evidence for the application of indicator and pathogen quantification methodologies for food safety management in commercial pork processing operations.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference61 articles.

1. Meat Consumption Worldwide from 1990 to 2021, by Meat Type https://www.statista.com/statistics/274522/global-per-capita-consumption-of-meat/

2. Total Pork Production from 2000 to 2020 (in Million Pounds) https://www.statista.com/statistics/194696/us-total-pork-production-since-2000/

3. Per Capita Consumption of Pork in the United States from 2015 to 2031 (in Pounds) https://www.statista.com/statistics/183616/per-capita-consumption-of-pork-in-the-us-since-2000/

4. National Pork Producers Council Pork Facts https://nppc.org/pork-facts/

5. Foreign Agricultural Service Pork 2020 Export Highlights;United States Department of Agriculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3