Purification, Characterization, and Immobilization of a Novel Protease-Resistant α-Galactosidase from Oudemansiella radicata and Its Application in Degradation of Raffinose Family Oligosaccharides from Soymilk

Author:

Geng Xueran,Lei JiayuORCID,Bau Tergun,Guo DongdongORCID,Chang Mingchang,Feng Cuiping,Xu Lijing,Cheng Yanfen,Zuo NingkeORCID,Meng Junlong

Abstract

α-galactosidase (EC 3.2.1.22) are glycosidases that catalyze the hydrolysis of α-1,6-linked D-galactosyl residues of different substrates, which has been widely applied in the food industry. Oudemansiella radicata is a kind of precious edible medicinal mushroom, which is a healthy, green, and safe food-derived enzyme source. In this study, a novel acidic α-galactosidase was purified from the dry fruiting bodies of O. radicata by ion-exchange chromatography and gel filtration, and designated as ORG (O. radicata α-galactosidase). ORG was further immobilized to obtain iORG by the sodium alginate–chitosan co-immobilization method. Then, the characterization of free and immobilized enzymes and their potential application in the removal of the RFOs from soymilk were investigated. The results showed that ORG might be a 74 kDa heterodimer, and it exhibited maximum activity at 50 °C and pH 3.0, whereas iORG showed maximum activity at 50 °C and pH 5.5. In addition, iORG exhibited higher thermal stability, pH stability, storage stability, and a better degradation effect on raffinose family oligosaccharides (RFOs) in soymilk than ORG, and iORG completely hydrolyzed RFOs in soymilk at 50 °C within 3 h. Therefore, iORG might be a promising candidate in the food industry due to its excellent stability, high removal efficiency of RFOs from soymilk, and great reusability.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference50 articles.

1. Production of a Highly Protease-Resistant Fungal alpha-Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing;Yang;PLoS ONE,2015

2. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase

3. The Molecular Defect Leading to Fabry Disease: Structure of Human α-Galactosidase

4. α-Galactosidase and Its Applications in Food Processing;Lu-Kwang;Encycl. Food Chem.,2019

5. Effect of multicarbohydrase enzymes containing α-galactosidase on the growth and apparent metabolizable energy digestibility of broiler chickens: a meta-analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3