CRISPR/Cas9-Induced Knockout of miR-24 Reduces Cholesterol and Monounsaturated Fatty Acid Content in Primary Goat Mammary Epithelial Cells

Author:

Huang Lian,Luo JunORCID,Gao Wenchang,Song NingORCID,Tian HuibinORCID,Zhu Lu,Jiang Qianming,Loor Juan J.ORCID

Abstract

In nonruminants, microRNA (miRNA)-24 plays an important role in lipid metabolism in adipose tissue and the liver. Although the abundance of miR-24 in ruminant mammary glands is the highest during peak lactation, its potential role in regulating the synthesis and secretion of fat into milk is unclear. This study aimed to identify the function of miR-24 in these processes using CRISPR/Cas9 technology in primary goat mammary epithelial cells (GMEC). A single clone containing a 66-nucleotide deletion between two sgRNAs mediating double-strand break (DSB) sites was obtained. The abundance of miR-24-3p and miR-24-5p encoded by the deleted sequence was decreased, whereas the target genes INSIG1 and FASN increased. In addition, miR-24 knockout reduced the gene abundance of genes associated with fatty acid and TAG synthesis and transcription regulator. Similarly, the content of cholesterol and monounsaturated fatty acid (MUFA) C18:1 decreased, whereas that of polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4 and C20:5 increased. Subsequently, knocking down of INSIG1 but not FASN reversed the effect of miR-24 knockout, indicating that miR-24 modulated cholesterol and fatty acid synthesis mainly by targeting INSIG1. Overall, the present in vitro data demonstrated a critical role for miR-24 in regulating lipid and fatty acid synthesis and highlighted the possibility of manipulating milk components in dairy goats.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3