Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage

Author:

Yao KunshanORCID,Sun Jun,Cheng Jiehong,Xu Min,Chen Chen,Zhou Xin,Dai ChunxiaORCID

Abstract

S-ovalbumin content is an indicator of egg freshness and has an important impact on the quality of processed foods. The objective of this study is to develop simplified models for monitoring the S-ovalbumin content of eggs during storage using hyperspectral imaging (HSI) and multivariate analysis. The hyperspectral images of egg samples at different storage periods were collected in the wavelength range of 401–1002 nm, and the reference S-ovalbumin content was determined by spectrophotometry. The standard normal variate (SNV) was employed to preprocess the raw spectral data. To simplify the calibration models, competitive adaptive reweighted sampling (CARS) was applied to select feature wavelengths from the whole spectral range. Based on the full and feature wavelengths, partial least squares regression (PLSR) and least squares support vector machine (LSSVM) models were developed, in which the simplified LSSVM model yielded the best performance with a coefficient of determination for prediction (R2P) of 0.918 and a root mean square error for prediction (RMSEP) of 7.215%. By transferring the quantitative model to the pixels of hyperspectral images, the visualizing distribution maps were generated, providing an intuitive and comprehensive evaluation for the S-ovalbumin content of eggs, which helps to understand the conversion of ovalbumin into S-ovalbumin during storage. The results provided the possibility of implementing a multispectral imaging technique for online monitoring the S-ovalbumin content of eggs.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3