Affiliation:
1. Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
2. School of Intelligent Manufacturing, Nanyang Institute of Technology, Nanyang 473000, China
Abstract
The process of meat postmortem aging is a complex one, in which improved tenderness and aroma coincide with negative effects such as water loss and microbial growth. Determining the optimal postmortem storage time for meat is crucial but also challenging. A new visual monitoring technique based on hyperspectral imaging (HSI) has been proposed to monitor pork aging progress. M. longissimus thoracis from 15 pigs were stored at 4 °C for 12 days while quality indexes and HSI spectra were measured daily. Based on changes in physical and chemical indicators, 100 out of the 180 pieces of meat were selected and classified into rigor mortis, aged, and spoilt meat. Discrete wavelet transform (DWT) technology was used to improve the accuracy of classification. DWT separated approximate and detailed signals from the spectrum, resulting in a significant increase in classification speed and precision. The support vector machine (SVM) model with 70 band spectra achieved remarkable classification accuracy of 97.06%. The study findings revealed that the aging and microbial spoilage process started at the edges of the meat, with varying rates from one pig to another. Using HSI and visualization techniques, it was possible to evaluate and portray the postmortem aging progress and edible safety of pork during storage. This technology has the potential to aid the meat industry in making informed decisions on the optimal storage and cooking times that would preserve the quality of the meat and ensure its safety for consumption.
Funder
Natural Science Foundation of Henan
Henan Province Science and Technology Research Project
Doctoral Research Fund in Nanyang Institute of Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献