Physicochemical Characterization of Interactions between Blueberry Polyphenols and Food Proteins from Dairy and Plant Sources

Author:

Chima Bianca,Mathews Paul,Morgan Scott,Johnson Sarah A.ORCID,Van Buiten Charlene B.ORCID

Abstract

Polyphenols are widely known for their benefits to human health; however, dietary intake of this class of compounds is low in the United States due to low intake of fruits and vegetables. Dairy foods (i.e., milk, yogurt) have been shown to increase polyphenol bioavailability via protein–polyphenol interactions, which may have important implications for human health. Increasing consumer interest in sustainability and health has led to the introduction of a variety of novel plant-based proteins and related food products as dairy alternatives. This study compared whey, a popular dairy-based food protein, to pea and hemp proteins for their abilities to form complexes with polyphenols from blueberries, which are a widely consumed fruit in the US with demonstrated health effects. Physical and chemical characteristics of each protein extract in the presence and absence of blueberry polyphenols were investigated using a variety of spectroscopic methods. The influence of polyphenol complexation on protein digestion was also assessed in vitro. While all proteins formed complexes with blueberry polyphenols, the hemp and pea proteins demonstrated greater polyphenol binding affinities than whey, which may be due to observed differences in protein secondary structure. Polyphenol addition did not affect the digestion of any protein studied. Solution pH appeared to play a role in protein–polyphenol complex formation, which suggests that the effects observed in this model food system may differ from food systems designed to mimic other food products, such as plant-based yogurts. This study provides a foundation for exploring the effects of plant-based proteins on phytochemical functionality in complex, “whole food” matrices, and supports the development of plant-based dairy analogs aimed at increasing polyphenol stability and bioavailability.

Funder

United States Department of Agriculture

Colorado State University - Department of Food Science and Human Nutrition Research Innovation Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3