Thermal Inactivation Kinetics and Radio Frequency Control of Aspergillus in Almond Kernels

Author:

Gao Yu,Guan Xiangyu,Wan Ailin,Cui Yuan,Kou Xiaoxi,Li Rui,Wang Shaojin

Abstract

Mold infections in almonds are a safety issue during post-harvest, storage and consumption, leading to health problems for consumers and causing economic losses. The aim of this study was to isolate mold from infected almond kernels and identify it by whole genome sequence (WGS). Then, the more heat resistant mold was selected and the thermal inactivation kinetics of this mold influenced by temperature and water activity (aw) was developed. Hot air-assisted radio frequency (RF) heating was used to validate pasteurization efficacy based on the thermal inactivation kinetics of this target mold. The results showed that the two types of molds were Penicillium and Aspergillus identified by WGS. The selected Aspergillus had higher heat resistance than the Penicillium in the almond kernels. Inactivation data for the target Aspergillus fitted the Weibull model better than the first-order kinetic model. The population changes of the target Aspergillus under the given conditions could be predicted from Mafart’s modified Bigelow model. The RF treatment was effectively used for inactivating Aspergillus in almond kernels based on Mafart’s modified Bigelow model and the cumulative lethal time model.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3