High-Throughput Flow Injection Analysis–Mass Spectrometry (FIA-MS) Fingerprinting for the Authentication of Tea Application to the Detection of Teas Adulterated with Chicory

Author:

Vilà Mònica,Bedmar Àlex,Saurina JavierORCID,Núñez OscarORCID,Sentellas SòniaORCID

Abstract

Tea is a broadly consumed beverage worldwide that is susceptible to fraudulent practices, including its adulteration with other plants such as chicory extracts. In the present work, a non-targeted high-throughput flow injection analysis-mass spectrometry (FIA-MS) fingerprinting methodology was employed to characterize and classify different varieties of tea (black, green, red, oolong, and white) and chicory extracts by principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA). Detection and quantitation of frauds in black and green tea extracts adulterated with chicory were also evaluated as proofs of concept using partial least squares (PLS) regression. Overall, PLS-DA showed that FIA-MS fingerprints in both negative and positive ionization modes were excellent sample chemical descriptors to discriminate tea samples from chicory independently of the tea product variety as well as to classify and discriminate among some of the analyzed tea groups. The classification rate was 100% in all the paired cases—i.e., each tea product variety versus chicory—by PLS-DA calibration and prediction models showing their capability to assess tea authentication. The results obtained for chicory adulteration detection and quantitation using PLS were satisfactory in the two adulteration cases evaluated (green and black teas adulterated with chicory), with calibration, cross-validation, and prediction errors below 5.8%, 8.5%, and 16.4%, respectively. Thus, the non-targeted FIA-MS fingerprinting methodology demonstrated to be a high-throughput, cost-effective, simple, and reliable approach to assess tea authentication issues.

Funder

Agencia Estatal de Investigación

Agency for the Administration of University and Research Grants, Generalitat de Catalunya

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3