Effect of Thermal Treatment on the Internal Structure, Physicochemical Properties and Storage Stability of Whole Grain Highland Barley Flour

Author:

Dang Bin,Zhang Wen-Gang,Zhang Jie,Yang Xi-Juan,Xu Huai-De

Abstract

In this study, to improve the processing performance of whole grain highland barley flour (whole grain HB flour), they were prepared by sand-roasting, far-infrared baking, steam explosion, and extrusion, and the effects of on functional properties and storage characteristics were measured. The results indicated that sand-roasting, far-infrared baking, and steam explosion all caused cracks and honeycomb structures in the outer layer and endosperm of the highland barley. The XRD analysis results indicated that highland barley starch treated by far-infrared baking exhibited typical A-type crystal structure, while sand-roasting, steam explosion, and extrusion presented the typical V-type. The results of DSC analysis revealed that the onset temperature (To), peak temperature (Tp), gelatinization enthalpy (ΔH), peak viscosity (PV), trough viscosity (TV), and final viscosity (FV) decreased significantly, while the swelling power, water-holding capacity and oil-holding capacity increased significantly. During the storage period, the moisture content and lipase activity of the whole grain HB flour after thermal treatment remained at a low level; the fatty acid value, peroxide value, and malondialdehyde value increased; finally, the cooked whole grain HB flour was unstable during storage. The functional properties of whole grain HB flour can be improved by steam explosion, and will then have better storage stability.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3