Author:
Zhang Zhenhui,Li Lin,Li Yuting,Wu Yi,Zhang Xia,Qi Haiping,Li Bing
Abstract
ο-benzoquinone is a common intermediate which is mostly formed by the oxidation of phenolics or polyphenols containing catechol structure. ο-benzoquinone has an outstanding nucleophilic ability, while advanced glycation end products (AGEs) are nucleophilic and can undergo a nucleophilic addition reaction with ο-benzoquinone to mitigate the harmful effects of AGEs on the body. As common nucleophilic substances, amino acids existing in large quantities in food processing and in vivo may bind competitively with ο-benzoquinone, thus influencing the trapping of ο-benzoquinone with AGEs. In this study, cyclic voltammetry and coexistence experiments were used to compare the reactivities of Nε-(carboxymethyl) lysine (CML) and amino acids with 4-methylbenzoquinone (4-MBQ). The results showed that CML is more reactive with ο-benzoquinone than most amino acids, and even in complex systems, ο-benzoquinone still captured CML. Moreover, almost all adducts were identified by UPLC-QTOF-MS/MS, and their chemical formulas were deduced. Quantum chemistry accurately predicts the efficiency and site of reactions of ο-benzoquinone and nucleophiles to a certain extent, and found that a secondary amine has a greater reactivity with 4-MBQ than a primary amine in a similar molecular structure. In general, ο-benzoquinone could capture AGEs, thereby showing potential to reduce the harmfulness of AGEs.
Funder
This research was funded by Key Project of Guangzhou S&T Program
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science