Amylose Inter-Chain Entanglement and Inter-Chain Overlap Impact Rice Quality

Author:

Li ChangfengORCID,Ji Yi,Zhang Shaobo,Yang Xiaoyan,Gilbert RobertORCID,Li SongnanORCID,Li Enpeng

Abstract

Retrogradation of cooked rice happens in two ways: one is by the formation of ordered structures, and the other is through intra- and inter-chain entanglement and inter-chain overlap, which in turn are affected by the amylose chain-length distribution. Both entanglement and overlap could affect rice texture. Here, four amylose samples were isolated from starch by precipitation from a dimethyl sulfoxide solution with butan-1-ol and isoamyl alcohol. Following enzymatic debranching, they were then characterized using size-exclusion chromatography. Amylose solutions (10%, m/v) were made by dissolving amylose in 90% (v/v) DMSO. Amylose gels (10%, w/v) were made by dissolving amylose powders into hot water, followed by cooling. The rigidity of the amylose gels and the structural order were measured using a texture analyzer and X-ray diffractometer, respectively. In the amylose solution, for a given mass of polymer in a fixed amount of solvent, the total occupied volume was reduced when the polymer molecular weight was smaller, resulting in less inter-chain overlap and a lower viscosity of the amylose solution. The overall mobility and diffusion of the molecules were inversely related to the square of the molecular weight until the gelation concentration. Thus, amylose gels in which amylose had a lower molecular weight had a greater chance to permeate into other molecules, which counterintuitively led to more inter-chain entanglement and more rigid amylose gels during retrogradation. This information could help rice breeders improve rice quality by using the molecular structure of starch as a guide.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3