Abstract
Manufacturers add sugar and fully hydrogenated vegetable oils to peanut butter to avoid its oil separation during storage. Unfortunately, hydrogenated oils are significant sources of saturated fats, and reducing their consumption is challenging for food scientists without affecting the desired characteristics of food products. Therefore, in a preliminary study, 1%, 1.5%, and 2% of three natural waxes (rice bran, carnauba, and beeswax) were added to the natural peanut butter to test their efficacy as a stabilizer. Rice bran and carnauba wax added to peanut butter presented a higher elastic modulus (G’) and lower oil separation percentages than beeswax. However, no significant differences were found between the different percentages of waxes. Thus, in the final experiments, 1% of these selected waxes (rice bran and carnauba waxes) were added directly to the roasted ground peanut. Due to the difficulty of adding high melting point waxes to the peanut butter, a second experiment added wax oleogel (rice-bran and carnauba wax) to defatted peanut flour. After four weeks of storage, all of the samples were examined for their texture (TPA) and oil separation. The sample with directly added bran wax had the highest values for spreadability and firmness, and the lowest oil separation, which was 11.94 ± 0.90 N·s−1, 19.60 ± 0.71 N·s−1, and 0.87 ± 0.05%, respectively. In the peanut flour sample, the spreadability, firmness, and separated oil of the rice bran wax oleogel added sample were 46.95 ± 0.99 N·s−1, 66.61 ± 0.93 N, and 1.57 ± 0.07%, respectively. However, the textural properties of the rice bran wax oleogel added sample were close to the commercial peanut butter (natural and creamy). Therefore, the results indicate that the rice bran wax oleogel could be the potential replacement of the fully hydrogenated oil as a stabilizer.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献