Abstract
The aim of this research is to develop burger patties from fungal protein. For this purpose, to maximize fungal biomass production, an optimization of the growth medium was initially carried out by testing different carbon sources and its proportion with nitrogen. Subsequently, for the design of the fungal patties, the effect of different flours, binders, and colorants on the properties of texture, water retention capacity, and color were tested, with a traditional animal-based burger patty as a control. Based on the first results, two optimal formulations were chosen and analyzed using an electronic tongue with the same control as reference. The conditions that maximized biomass production were 6 days of incubation and maltodextrin as a carbon source at a concentration of 90 g/L. In terms of product design, the formulation containing quinoa flour, carboxymethylcellulose, and beet extract was the most similar to the control. Finally, through shelf-life analysis, it was determined that the physical characteristics of the fungal meat substitute did not change significantly in an interval of 14 days. However, the product should be observed for a longer period. In addition, by the proximate analysis, it was concluded that fungal patties could have nutritional claims such as rich content in protein and fiber.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献