Pumpkin Skin Polysaccharide–Zn(II) Complex: Preparation, Characterization, and Suppression of Inflammation in Zebrafish

Author:

Dong Shujun,Zhang Bin,Ma Yue,Chang Hong,Zheng Zhenjia,Zhao Xiaoyan

Abstract

In this study, pumpkin (Cucurbita moschata) skin polysaccharide–zinc(II) (PSP−Zn) complex was successfully prepared. The structure and physicochemical properties of PSP and PSP−Zn were analyzed. The anti-inflammatory activity of PSP and PSP−Zn was investigated in zebrafish larvae induced by copper sulphate. PSP and PSP−Zn consisted of rhamnose, arabinose, galactose, glucose, and galacturonic acid. The molecular weight (Mw) of PSP and PSP−Zn were 3.034 × 106 and 3.222 × 106 Da, respectively. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) analysis results suggested that the chemical modification of zinc might occur through hydroxyl groups of PSP. The PSP−Zn complex had lamellar texture, smooth surface morphology, and larger particle size. X-ray Diffraction (XRD) analysis revealed that both PSP and PSP−Zn were semi-crystalline substances. PSP−Zn solution showed superior stability in a weak acid and alkaline environment, especially at pH = 6.0. Moreover, PSP and PSP−Zn showed a good inhibitory effect on inflammation cells in zebrafish. Real-time quantitative polymerase chain reaction (RT-PCR) result suggested that the anti-inflammatory mechanism of PSP and PSP−Zn were through downregulation of the expression of nitric oxide synthase 2b (nos2b), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and nuclear factor-kappa B2 (NF-κB2). The present study indicated that PSP−Zn is expected to be a safe and efficient novel zinc supplement with anti-inflammatory activity.

Funder

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3