A Method of Deep Learning Model Optimization for Image Classification on Edge Device

Author:

Lee HyungkeukORCID,Lee NamKyung,Lee Sungjin

Abstract

Due to the recent increasing utilization of deep learning models on edge devices, the industry demand for Deep Learning Model Optimization (DLMO) is also increasing. This paper derives a usage strategy of DLMO based on the performance evaluation through light convolution, quantization, pruning techniques and knowledge distillation, known to be excellent in reducing memory size and operation delay with a minimal accuracy drop. Through experiments regarding image classification, we derive possible and optimal strategies to apply deep learning into Internet of Things (IoT) or tiny embedded devices. In particular, strategies for DLMO technology most suitable for each on-device Artificial Intelligence (AI) service are proposed in terms of performance factors. In this paper, we suggest a possible solution of the most rational algorithm under very limited resource environments by utilizing mature deep learning methodologies.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference73 articles.

1. A Survey on Edge Computing Systems and Tools

2. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding;Han;arXiv,2015

3. Enhancement of Detection of Diabetic Retinopathy Using Harris Hawks Optimization with Deep Learning Model

4. Towards Securing Real Time Data in IoMT Environment;Palve;Proceedings of the International Conference on Communication Systems and Network Technologies (CSNT),2018

5. A Review on Deep Learning Techniques for IoT Data

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3