Abstract
The attitude sensor of the aircraft can give feedback on the perceived flight attitude information to the input of the flight controller to realize the closed-loop control of the flight attitude. Therefore, the fault diagnosis of attitude sensors is crucial for the flight safety of aircraft, in view of the situation that the existing diagnosis methods fail to give consideration to both the diagnosis rate and the diagnosis accuracy. In this paper, a fast and high-precision fault diagnosis strategy for aircraft sensor is proposed. Specifically, the aircraft’s dynamics model and the attitude sensor’s fault model are built. The SENet attention mechanism is used to allocate weights for the collected time-domain fault signals and transformed time-frequency signals, and then inject the fused feature signals with weights into the RepVGG based on the convolutional neural network structure for deep feature mining and classification. Experimental results show that the proposed method can achieve good precision speed tradeoff.
Funder
National Natural Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献