UAV Sensor Fault Detection Using a Classifier without Negative Samples: A Local Density Regulated Optimization Algorithm

Author:

Guo Kai,Liu Liansheng,Shi Shuhui,Liu Datong,Peng Xiyuan

Abstract

Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight security, in which the flight control system conducts real-time control for the vehicles relying on the sensing information from sensors, and erroneous sensor data will lead to false flight control commands, causing undesirable consequences. However, because of the scarcity of faulty instances, it still remains a challenging issue for flight sensor fault detection. The one-class support vector machine approach is a favorable classifier without negative samples, however, it is sensitive to outliers that deviate from the center and lacks a mechanism for coping with them. The compactness of its decision boundary is influenced, leading to the degradation of detection rate. To deal with this issue, an optimized one-class support vector machine approach regulated by local density is proposed in this paper, which regulates the tolerance extents of its decision boundary to the outliers according to their extent of abnormality indicated by their local densities. The application scope of the local density theory is narrowed to keep the internal instances unchanged and a rule for assigning the outliers continuous density coefficients is raised. Simulation results on a real flight control system model have proved its effectiveness and superiority.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3