Abstract
Silver nanoparticles (Ag NPs) as antibacterial agents are of considerable interest owing to their simplicity, high surface area to volume ratio, and efficient oligodynamic properties. Hence, we investigated the synthesis of silica-supported Ag NPs (SiO2@Ag) as an effective antibacterial agent by using a wet-impregnation method. The formation of SiO2@Ag with Ag NP (5–15 nm diameter) on the silica particle (100–130 nm diameter) was confirmed with transmission electron microscopy (TEM). The study on antibacterial activity was performed in a liquid culture to determine the minimum inhibitory concentration (MIC) against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria. Both bacteria are chosen to understand difference in the effect of Ag NPs against Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria. SiO2@Ag mesoporous nanoparticles had excellent antibacterial activity against E. coli bacteria and fully restricted the bacterial growth when the material concentration was increased up to 1.00 mg/mL. In addition, the obtained material had good adhesion to both steel and polyethylene substrates and exhibited a high inhibition effect against E. coli bacteria.
Funder
National Research Foundation of Korea
Subject
General Materials Science,General Chemical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献