Understanding the Role of Different Substrate Geometries for Achieving Optimum Tip-Enhanced Raman Scattering Sensitivity

Author:

He Lu,Rahaman MahfujurORCID,Madeira Teresa I.,Zahn Dietrich R.T.ORCID

Abstract

Tip-enhanced Raman spectroscopy (TERS) has experienced tremendous progress over the last two decades. Despite detecting single molecules and achieving sub-nanometer spatial resolution, attaining high TERS sensitivity is still a challenging task due to low reproducibility of tip fabrication, especially regarding very sharp tip apices. Here, we present an approach for achieving strong TERS sensitivity via a systematic study of the near-field enhancement properties in the so-called gap-mode TERS configurations using the combination of finite element method (FEM) simulations and TERS experiments. In the simulation study, a gold tip apex is fixed at 80 nm of diameter, and the substrate consists of 20 nm high gold nanodiscs with diameter varying from 5 nm to 120 nm placed on a flat extended gold substrate. The local electric field distributions are computed in the spectral range from 500 nm to 800 nm with the tip placed both at the center and the edge of the gold nanostructure. The model is then compared with the typical gap-mode TERS configuration, in which a tip of varying diameter from 2 nm to 160 nm is placed in the proximity of a gold thin film. Our simulations show that the tip-nanodisc combined system provides much improved TERS sensitivity compared to the conventional gap-mode TERS configuration. We find that for the same tip diameter, the spatial resolution achieved in the tip-nanodisc model is much better than that observed in the conventional gap-mode TERS, which requires a very sharp metal tip to achieve the same spatial resolution on an extended metal substrate. Finally, TERS experiments are conducted on gold nanodisc arrays using home-built gold tips to validate our simulation results. Our simulations provide a guide for designing and realization of both high-spatial resolution and strong TERS intensity in future TERS experiments.

Funder

European Social Fund

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3