TiO2-Based Nanocomposites Thin Film Having Boosted Photocatalytic Activity for Xenobiotics Water Pollution Remediation

Author:

Nicosia AngeloORCID,Vento FabianaORCID,Di Mari Gisella Maria,D’Urso Luisa,Mineo Placido G.ORCID

Abstract

Photocatalytic remediation represents a potential sustainable solution to the abatement of xenobiotic pollutants released within the water environment. Aeroxide® P25 titanium dioxide nanoparticles (TiO2 NPs) are well-known as one of the most efficient photocatalysts in several applications, and have also been investigated in water remediation as suspended powder. Recently, their application in the form of thin films has been revealed as a potential alternative to avoid time-consuming filtration processes. Polymers represent suitable substrates to immobilize TiO2 NPs, allowing further production of thin films that can be exploited as a photoactive coating for environmental remediation. Nevertheless, the methods adopted to immobilize TiO2 NPs on polymer matrix involve time-consuming procedures and the use of several reactants. Here, titanium dioxide-based nanocomposites (NCx) were obtained through a new approach based on Methyl Methacrylate in situ bulk polymerization and were compared with a blended mixture (BL). Their morphology and chemical–physical properties were investigated through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), UV–Vis, and Raman spectroscopies. It was revealed that the in situ approach deeply influences the chemical–physical interactions between the polymer matrix and TiO2 NPs. Photocatalytic experiments revealed the boosted photodegradation activity of NCx thin films, induced by the in situ approach. The photodegradation of paraquat and acetaminophen was also ascertained.

Funder

Università di Catania

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3