Delineation of Hydrochemical Characteristics and Tracing Nitrate Contamination of Groundwater Based on Hydrochemical Methods and Isotope Techniques in the Northern Huangqihai Basin, China

Author:

Jin Jing,Wang Zihe,Zhao Yiping,Ding Huijun,Zhang Jing

Abstract

Hydrochemical research and identification of nitrate contamination are of great significant for the endorheic basin, and the Northern Huangqihai Basin (a typical endorheic basin) was comprehensively researched. The results showed that the main hydrochemical facies were HCO3–Mg·Ca and HCO3–Ca·Mg. Spatial variation coefficients of most indices were greater than 60%, which was probably caused by human activities. The hydrochemical evolution was mainly affected by rock weathering and also by cation exchange. The D–18O relationship of groundwater was δD = 5.93δ18O − 19.18, and the d–excess range was −1.60–+6.01‰, indicating that groundwater was mainly derived from precipitation and that contaminants were very likely to enter groundwater along with precipitation infiltration. The NO3(N) contents in groundwater exceeded the standard. Hydrochemical analyses indicated that precipitation, industrial activities and synthetic NO3 were unlikely to be the main sources of nitrate contamination in the study area. No obvious denitrification occurred in the transformation process of nitrate. The δ15N(NO3) values ranged from +0.29‰ to +14.39‰, and the δ18O(NO3) values ranged from −6.47‰ to +1.24‰. Based on the δ15N(NO3) – δ18O(NO3) dual isotope technique and hydrochemical methods, manure, sewage and NH4 fertilizers were identified to be the main sources of nitrate contamination. This study highlights the effectiveness of the integration of hydrochemical and isotopic data for nitrate source identification, and is significant for fully understanding groundwater hydrochemistry in endorheic basins and scientifically managing and protecting groundwater.

Funder

Basic Scientific Research Foundation Special Project of the China Institute of Water Resources and Hydropower Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3