Construction and application of a composite model for acid mine drainage quality evaluation based on analytic hierarchy process, factor analysis and fuzzy comprehensive evaluation: Guizhou Province, China, as a case

Author:

Han Hang1,Li Bo1,Yang Lei2,Yang Yu1,Wang Zhongmei1,Mu Xiwei3,Zhang Beibei4

Affiliation:

1. Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering Guizhou University Guiyang China

2. National Engineering Research Center of Coal Mine Water Hazard Controlling China University of Mining and Technology, Beijing Beijing China

3. Guizhou Coalfield Geology Bureau Geological Engineering Survey Institution Guiyang China

4. Guizhou Civil Engineering Experimental Teaching Demonstration Center Guiyang University Guiyang China

Abstract

AbstractThe process of mining activities often causes the formation of acid mine drainage (AMD). Through rock fractures and underground rivers, AMD can easily enter the groundwater environment near mines and cause serious pollution to water quality. In order to effectively evaluate the quality of polluted mine water and to understand its threat to the ecosystem around the mine. In this study, four AMD pollution distribution areas, Guiyang City, Bijie City, Qianxinan Prefecture, and Qiandongnan Prefecture in Guizhou Province, were used as the study area. A composite model for mine water quality evaluation was constructed using factor analysis (FA), analytic hierarchy process (AHP), and fuzzy comprehensive evaluation (FCE). Furthermore, by introducing the weighted average method and the level characteristic value (J), the water quality type and the water body environmental quality were evaluated comprehensively, respectively. Compared with the traditional evaluation model, the AHP‐FA‐FCE model has obvious advantages in the selection of evaluation indicators, the determination of indicator weights, and the comprehensive evaluation of water quality types, and the evaluation results obtained are more reasonable and accurate. Three common factors mainly controlled by mineral oxidation factor, human activity factor, and mineral dissolution factor were extracted by dimension reduction of the original hydrochemical data by FA. The water quality of the mine water samples was evaluated using SO42−, Fe, Al, Mn, Na, and F as evaluation indicators, and the results showed that the mine water samples in the study area as a whole were dominated by class V water, which accounted for 77.78% of the total. Based on the statistical analysis of the original data, it was found that influenced by the water–rock interactions in the study area and the AMD pollution components, the hydrochemical type of the mine water is mainly SO42−‐Ca‐Mg type. The water body environmental quality of mine water in four areas, Guiyang City, Qianxinan Prefecture, Bijie City, and Qiandongnan Prefecture, is from excellent to poor. The average level characteristic value of all the areas is more than 3, and the overall environmental quality of the water body is poor. The strong water–rock interaction and mining activities in the study area may be the main cause of AMD pollution. The results of this study may provide some theoretical reference for the water quality evaluation of AMD‐polluted areas.Practitioner Points A composite model for mine water quality evaluation was constructed. A factor analysis‐based evaluation indicator selection method is proposed. This study improved the weighting process of the traditional fuzzy comprehensive evaluation. A water quality discriminant based on the weighted average method is proposed. The water environmental quality of various types of mine water was evaluated.

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3