The Effect of Cornering on the Aerodynamics of a Multi-Element Wing in Ground Effect

Author:

Patel Dipesh,Garmory Andrew,Passmore MartinORCID

Abstract

This research investigates the effects of cornering on a multi-element wing in ground effect with the aim to improve the understanding of such in the effort to improve the performance of open-wheel race cars. A numerical validation study was performed to confirm the validity of the Detached Eddy Simulation CFD methodology used. This involved comparing numerical data with wind tunnel experimental data using a force balance and PIV for the velocity field to reveal the trajectory of the trailing vortex system. Once validated, the CFD was used to test the wing within a cornering condition as well as fixed yaw condition and its aerodynamic performance relative to the straight-line condition was analysed. Asymmetry was the general theme concerning the on-surface pressure distribution with this most prominent under the cornering condition. Ultimately, minimal change was observed regarding the downforce generated whilst drag was found to increase in the cornering condition and decrease slightly in the fixed yaw condition. Asymmetry was also observed in the wake of the wing where alterations to the relative strengths of the vortices was observed as well as their downstream paths which was generally governed by the direction of the freestream flow.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of wingspan on aerodynamic properties of rectangular NACA4412 wing in ground effect;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-01-12

2. Role of the front wing/wheel setting-up on the optimal cornering performances of a Formula 1 car;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-06-29

3. Automotive Aerodynamics Sensing Using Low-Profile Pressure Sensor Strip;IEEE Transactions on Instrumentation and Measurement;2023

4. Fluid-Structure Interaction Analysis of a Competitive Car during Brake-in-Turn Manoeuvre;Energies;2022-04-15

5. Influence of the Car Movable Aerodynamic Elements on Fast Road Car Cornering;Energies;2022-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3