Online Coupled Generalized Multiscale Finite Element Method for the Poroelasticity Problem in Fractured and Heterogeneous Media

Author:

Tyrylgin Aleksei,Vasilyeva Maria,Ammosov Dmitry,Chung Eric T.,Efendiev Yalchin

Abstract

In this paper, we consider the poroelasticity problem in fractured and heterogeneous media. The mathematical model contains a coupled system of equations for fluid pressures and displacements in heterogeneous media. Due to scale disparity, many approaches have been developed for solving detailed fine-grid problems on a coarse grid. However, some approaches can lack good accuracy on a coarse grid and some corrections for coarse-grid solutions are needed. In this paper, we present a coarse-grid approximation based on the generalized multiscale finite element method (GMsFEM). We present the construction of the offline and online multiscale basis functions. The offline multiscale basis functions are precomputed for the given heterogeneity and fracture network geometry, where for the construction, we solve a local spectral problem and use the dominant eigenvectors (appropriately defined) to construct multiscale basis functions. To construct the online basis functions, we use current information about the local residual and solve coupled poroelasticity problems in local domains. The online basis functions are used to enrich the offline multiscale space and rapidly reduce the error using residual information. Only with appropriate offline coarse-grid spaces can one guarantee a fast convergence of online methods. We present numerical results for poroelasticity problems in fractured and heterogeneous media. We investigate the influence of the number of offline and online basis functions on the relative errors between the multiscale solution and the reference (fine-scale) solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3