Partial Learning Using Partially Explicit Discretization for Multicontinuum/Multiscale Problems with Limited Observation: Dual Continuum Heterogeneous Poroelastic Media Simulation

Author:

Tyrylgin Aleksei,Stepanov SergeiORCID,Ammosov Dmitry,Grigorev Aleksandr,Vasilyeva Maria

Abstract

In this paper, we consider the poroelasticity problem in heterogeneous media. The mathematical model is described by a coupled system of equations for displacement and pressure in the coupled dual continuum porous media. We propose a new method based on hybrid explicit–implicit (HEI) learning to solve the poroelasticity problem in dual continuum heterogeneous media. We use a finite element method with standard linear basis functions for spatial approximation. We apply the explicit–implicit time scheme, where the explicit scheme is used for the low-conductive continuum and the implicit scheme for the high-conductive. The fixed-strain splitting scheme is used to accelerate the computation and decouple the flow and mechanics problems. The main idea of the proposed method is partial learning of particular degrees of freedom of the high-conductive continuum’s pressure (implicit part of the flow). First, we train a deep neural network (DNN) to obtain values of the implicit part of the flow at some spatial points at some time moments. Then, we apply the Discrete Empirical Interpolation Method (DEIM) combined with Proper Orthogonal Decomposition (POD) to restore the complete implicit parts and perform linear interpolation over time. Consequently, we treat the high-conductive continuum’s pressure as a known function and use it to find the other continuum’s pressure and displacements. Numerical results for the two-dimensional model problem are presented. The results demonstrate that the proposed method provides fast and accurate predictions.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3