Abstract
Land subsidence is a major concern in vastly growing metropolitans worldwide. The most serious risks in this scenario are linked to groundwater extraction and urban development. Pakistan’s fourth-largest city, Rawalpindi, and its twin Islamabad, located at the northern edge of the Potwar Plateau, are witnessing extensive urban expansion. Groundwater (tube-wells) is residents’ primary daily water supply in these metropolitan areas. Unnecessarily pumping and the local inhabitant’s excessive demand for groundwater disturb the sub-surface’s viability. The Persistent Scatterer Interferometry Synthetic Aperture Radar (PS-InSAR) approach, along with Sentinel-1 Synthetic Aperture Radar (SAR) imagery, were used to track land subsidence in Rawalpindi-Islamabad. The SARPROZ application was used to study a set of Sentinel-1 imagery obtained from January 2019 to June 2021 along descending and ascending orbits to estimate ground subsidence in the Rawalpindi-Islamabad area. The results show a significant increase (−25 to −30 mm/yr) in subsidence from −69 mm/yr in 2019 to −98 mm/yr in 2020. The suggested approach effectively maps, detects, and monitors subsidence-prone terrains and will enable better planning, surface infrastructure building designs, and risk management related to subsidence.
Funder
Major International (Regional) Joint Research Project of the NSFC
Subject
General Earth and Planetary Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献