Monitoring Analysis of Urban Subsidence in Northern Henan Province Based on TS-InSAR Technology

Author:

Chai Huabin1,Ding Yahui1ORCID,Hu Jibiao1,Geng Sijia1,Guan Pengju1,Xu Hui1,Zhao Yuqiao1,Xu Mingtao1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan Province, China

Abstract

The protracted and pervasive incidence of land subsidence emerges as a pivotal factor exerting a substantial impact on the sustainable development of urban landscapes. A nuanced comprehension of the spatiotemporal evolution characteristics of land subsidence within the Northern Henan Plain assumes paramount significance in the context of mitigating potential urban geological disasters. This study endeavors to redress the deficiency in information concerning the temporal and spatial evolution characteristics of enduring deformation in cities within the northern plain of Henan Province. To this end, the authors leveraged Sentinel-1A radar data processed through persistent scatterer interferometric synthetic aperture radar (PS-InSAR) technology to elucidate the distribution patterns of ground deformation and temporal evolution characteristics within the expansive 24-scene coverage research area. Empirical findings illuminate conspicuous surface deformation in Anyang, Puyang, and Hebi throughout the monitoring period. Spatially, land subsidence in the study area predominantly clusters in the suburban peripheries of the cities, with Hebi and Puyang registering a maximum subsidence rate exceeding 25 mm per annum. Temporally, land subsidence manifests predominantly during autumn and winter, whereas spring and summer display relatively stable land subsidence interspersed with a slight ground uplift. In order to rectify the spatial disparities observed between leveling data and PS-InSAR monitoring data, this experiment employed an averaging procedure on the PS-InSAR monitoring data, subsequently subjecting it to comparative analysis with the leveling data. Additionally, through the integration of the singular spectrum analysis (SSA) method and the time series deformation model, this study aspires to attain a comprehensive understanding of the temporal dynamics manifested in the PS-InSAR monitoring outcomes, while concurrently elucidating the factors influencing the observed deformations. Ultimately, this analysis discloses that the monitoring outcomes derived via PS-InSAR technology exhibit a root mean square error of ±12.9 mm and a standard deviation of ±13.31 mm. These statistical metrics furnish valuable insights into the precision and consistency of the PS-InSAR monitoring data. Drawing upon a comparative scrutiny of on-site data and historical remote sensing imagery within the study area, it has been discerned that excessive groundwater extraction and expansive surface engineering initiatives stand as the principal instigators of land subsidence in the research domain. Consequently, this experiment assumes the role of a salient reference for the mitigation of urban ground subsidence within the study area.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference49 articles.

1. Land subsidence monitoring with differential SAR interferometry;T. Strozzi;Remote Sensing,2001

2. Rapid Mapping and Deformation Analysis over Cultural Heritage and Rural Sites Based on Persistent Scatterer Interferometry

3. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method

4. Land subsidence monitoring of Jiangsu coastal areas with high resolution time series InSAR;Y. T. Zhan;Science of Surveying and Mapping,2022

5. Time series analysis of InSAR data: Methods and trends

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3