Effects of Low Temperature on the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity across Different Plant Function Types

Author:

Chen JidaiORCID,Liu XinjieORCID,Ma Yan,Liu LiangyunORCID

Abstract

Solar-induced chlorophyll fluorescence (SIF) has been recognized as a proxy of gross primary production (GPP) across various terrestrial biomes. However, the effects of low temperature on SIF and GPP among different plant function types (PFTs) have not yet been well-explored. To gain a better understanding of the relationship between SIF and GPP, we investigated the variation in the GPP/SIF ratio in response to low-temperature conditions using satellite and tower-based datasets. Based on the TROPOMI SIF product and FLUXCOM GPP data, we found that the SIF and GPP exhibited consistent seasonal and spatial patterns, while the GPP/SIF ratio differed for different PFTs. The GPP/SIF ratio for forest types was generally higher than 10 gC·d−1·mw−1·nm·sr, whereas the GPP/SIF ratio for grass and crop types was generally lower than 10 gC·d−1·mw−1·nm·sr. In addition, there were noticeable differences in the seasonal pattern of the GPP/SIF ratio between the selected samples that experienced low-temperature stress (below 10 °C, defined as group A) and those that grew under relatively warm conditions (above 10 °C throughout the year, defined as group B). The GPP/SIF ratio for group A generally exhibited a “hump-shaped” seasonal pattern, and that for group B showed a slightly “bowl-shaped” seasonal pattern, which means it is important to consider the effects of temperature on the SIF-GPP relationship. Through linear regression and correlation analysis, we demonstrate that there was a positive correlation between the GPP/SIF ratio and temperature for group A, with a wide temperature range including low-temperature conditions, indicating that, in this case, temperature affected the SIF–GPP relationship; however, for group B—with a temperature higher than 10 °C throughout the year—the GPP/SIF ratio was not consistently affected by temperature. The response of GPP/SIF to low temperature stress was confirmed by tower-based observations at a C3 cropland (C3CRO) site and a boreal evergreen needleleaf forest (BoENF) site. Although the relationship between the GPP/SIF ratio and temperature differed among PFTs, the GPP/SIF ratio decreased under low-temperature conditions for PFTs. Therefore, the GPP/SIF ratio was not constant and was largely influenced by low temperature for different PFTs, thus highlighting the importance of incorporating temperature into SIF-based GPP estimation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3