A Systematic Classification Method for Grassland Community Division Using China’s ZY1-02D Hyperspectral Observations

Author:

Wei Dandan,Liu Kai,Xiao Chenchao,Sun Weiwei,Liu WeiweiORCID,Liu Lidong,Huang Xizhi,Feng Chunyong

Abstract

The main feature of grassland degradation is the change in the vegetation community structure. Hyperspectral-based grassland community identification is the basis and a prerequisite for large-area high-precision grassland degradation monitoring and management. To obtain the distribution pattern of grassland communities in Xilinhot, Inner Mongolia Autonomous Region, China, we propose a systematic classification method (SCM) for hyperspectral grassland community identification using China’s ZiYuan 1-02D (ZY1-02D) satellite. First, the sample label data were selected from the field-collected samples, vegetation map data, and function zoning data for the Nature Reserve. Second, the spatial features of the images were extracted using extended morphological profiles (EMPs) based on the reduced dimensionality of principal component analysis (PCA). Then, they were input into the random forest (RF) classifier to obtain the preclassification results for grassland communities. Finally, to reduce the influence of salt-and-pepper noise, the label similarity probability filter (LSPF) method was used for postclassification processing, and the RF was again used to obtain the final classification results. The results showed that, compared with the other seven (e.g., SVM, RF, 3D-CNN) methods, the SCM obtained the optimal classification results with an overall classification accuracy (OCA) of 94.56%. In addition, the mapping results of the SCM showed its ability to accurately identify various ground objects in large-scale grassland community scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3