Spatial-Convolution Spectral-Transformer Interactive Network for Large-Scale Fast Refined Land Cover Classification and Mapping Based on ZY1-02D Satellite Hyperspectral Imagery

Author:

Wang Yibo12ORCID,Zhang Xia1ORCID,Huang Changping1,Qi Wenchao1,Wang Jinnian3,Yang Xiankun3ORCID,Ding Songtao12,Tao Shiyu12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100101, China

3. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

Abstract

Satellite hyperspectral imagery is an important data source for large-scale refined land cover classification and mapping, but the high spatial heterogeneity and spectral variability at low spatial resolution and the high computation cost for massive data remain challenges in the research community. In recent years, convolutional neural network (CNN) models with the capability for feature extraction have been widely used in hyperspectral image classification. However, incomplete feature extraction, inappropriate feature fusion, and high time consumption are still the major problems for CNN applications in large-scale fine land cover mapping. In this study, a Spatial-Convolution Spectral-Transformer Interactive Network (SCSTIN) was proposed to integrate 2D-CNN and Transformer into a dual-branch network to enhance feature extraction capabilities by exploring spatial context information and spectral sequence signatures in a targeted manner. In addition, spatial-spectral interactive fusion (SSIF) units and category-adaptive weighting (CAW) as two feature fusion modules were also adopted between and after the two feature extraction branches to improve efficiency in feature fusion. The ZY1-02D hyperspectral imagery was collected to conduct the experiments in the study area of the eastern foothills of the Helan Mountains (EFHLM), covering an area of about 8800 km2, which is the largest hyperspectral dataset as far as we know. To explore the potential of the proposed network in terms of accuracy and efficiency, SCSTIN models with different depths (SCSTIN-4 and SCSTIN-2) were performed. The results suggest that compared with the previous eight advanced hyperspectral image classifiers, both SCSTIN models achieved satisfactory performance in accuracy and efficiency aspects with low complexity, where SCSTIN-4 achieved the highest accuracy and SCSTIN-2 obtained higher efficiency. Accordingly, the SCSTIN models are reliable for large-scale fast refined land cover classification and mapping. In addition, the spatial distribution pattern of diverse ground objects in EFHLM is also analyzed.

Funder

National Natural Science Foundation of China

Science and Technology Project for Black Soil Granary

Key Research Program of Frontier Sciences, CAS

National Key R&D Program of China

Youth Innovation Promotion Association, CAS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3