Weighted Mean Temperature Hybrid Models in China Based on Artificial Neural Network Methods

Author:

Cai Meng,Li JunyuORCID,Liu Lilong,Huang Liangke,Zhou LvORCID,Huang Ling,He Hongchang

Abstract

The weighted mean temperature (Tm) is crucial for converting zenith wet delay to precipitable water vapor in global navigation satellite system meteorology. Mainstream Tm models have the shortcomings of poor universality and severe local accuracy loss, and they cannot reflect the nonlinear relationship between Tm and meteorological/spatiotemporal factors. Artificial neural network methods can effectively solve these problems. This study combines the advantages of the models that need in situ meteorological parameters and the empirical models to propose Tm hybrid models based on artificial neural network methods. The verification results showed that, compared with the Bevis, GPT3, and HGPT models, the root mean square errors (RMSEs) of the new three hybrid models were reduced by 35.3%/32.0%/31.6%, 40.8%/37.8%/37.4%, and 39.5%/36.4%/36.0%, respectively. The consistency of the new three hybrid models was more stable than the Bevis, GPT3, and HGPT models in terms of space and time. In addition, the three models occupy 99.6% less computer storage space than the GPT3 model, and the number of parameters was reduced by 99.2%. To better evaluate the improvement of hybrid models Tm in the precipitable water vapor (PWV) retrieval, the PWVs calculated using the radiosonde Tm and zenith wet delay (ZWD) were used as the reference. The RMSE of PWV derived from the best hybrid model’s Tm and the radiosonde ZWD meets the demand for meteorological research and is improved by 33.9%, 36.4%, and 37.0% compared with that of Bevis, GPT3, and HGPT models, respectively. The hypothesis testing results further verified that these improvements are significant. Therefore, these new models can be used for high-precision Tm estimation in China, especially in Global Navigation Satellite System (GNSS) receivers without ample storage space.

Funder

Natural Science Foundation of Guangxi Province

Foundation of Guilin University of Technology

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3