Research on Modeling Weighted Average Temperature Based on the Machine Learning Algorithms

Author:

Li Kai1,Li Li1ORCID,Hu Andong2,Pan Jianping1,Ma Yixiang1,Zhang Mingsong1

Affiliation:

1. Research Center of Beidou Navigation and Environmental Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, China

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA

Abstract

In response to the nonlinear fitting difficulty of the traditional weighted average temperature (Tm) modeling, this paper proposed four machine learning (ML)-based Tm models. Based on the seven radiosondes in the Yangtze River Delta region from 2014 to 2019, four forecasting ML-based Tm models were constructed using Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), Random Forest (RF), and Classification and Regression Tree (CART) algorithms. The surface temperature (Ts), water vapor pressure (Es), and atmospheric pressure (Ps) were identified as crucial influencing factors after analyzing their correlations to the Tm. The ML-based Tm models were trained using seven radiosondes from 2014 to 2018. Then, the mean bias and root mean square error (RMSE) of the 2019 dataset were used to evaluate the accuracy of the ML-based Tm models. Experimental results show that the overall accuracy of the LightGBM-based Tm model is superior to the SVM, CART, and RF-based Tm models under different temporal variations. The mean RMSE of the daily LightGBM-based Tm model is reduced by 0.07 K, 0.04 K, and 0.13 K compared to the other three ML-based models, respectively. The mean RMSE of the monthly LightGBM-based Tm model is reduced by 0.09 K, 0.04 K, and 0.11 K, respectively. The mean RMSE of the quarterly LightGBM-based Tm model is reduced by 0.09 K, 0.04 K, and 0.11 K, respectively. The mean bias of the LightGBM-based Tm model is also smaller than that of the other ML-based Tm models. Therefore, the LightGBM-based Tm model can provide more accurate Tm and is more suitable for obtaining GNSS precipitable water vapor in the Yangtze River Delta region.

Funder

China Natural Science

Jiangsu Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3