Selected Materials and Technologies for Electrical Energy Sector

Author:

Stryczewska Henryka Danuta1ORCID,Boiko Oleksandr1ORCID,Stępień Mariusz Adam2ORCID,Lasek Paweł2,Yamazato Masaaki3,Higa Akira3

Affiliation:

1. Department of Electrical Engineering and Electrotechnologies, Lublin University of Technology, 38A Nadbystrzycka Street, 20-618 Lublin, Poland

2. Department of Power Electronics, Electric Drive and Robotics, Silesian University of Technology, 2B Krzywoustego Street, 44-100 Gliwice, Poland

3. Department of Electrical and Electronics Engineering, University of the Ryukyus, 1, Senbaru, Nishihara, Okinawa 903-0213, Japan

Abstract

Ensuring the energy transition in order to decrease CO2 and volatile organic compounds emissions and improve the efficiency of energy processes requires the development of advanced materials and technologies for the electrical energy sector. The article reviews superconducting materials, functional nanomaterials used in the power industry mainly due to their magnetic, electrical, optical, and dielectric properties and the thin layers of amorphous carbon nitride, which properties make them an important material from the point of view of environmental protection, optoelectronic, photovoltaic and energy storage. The superconductivity-based technologies, material processing, and thermal and nonthermal plasma generation have been reviewed as technologies that can be a solution to chosen problems in the electrical energy sector and environment. The study explains directly both—the basics and application potential of low and high-temperature superconductors as well as peculiarities of the related manufacturing technologies for Roebel cables, 1G and 2G HTS tapes, and superconductor coil systems. Among the superconducting materials, particular attention was paid to the magnesium di-boride MgB2 and its potential applications in the power industry. The benefits of the use of carbon films with amorphous structures in electronics, sensing technologies, solar cells, FETs, and memory devices were discussed. The article provides the information about most interesting, from the R&D point of view, groups of materials for PV applications. It summarises the advantages and disadvantages of their use regarding commercial requirements such as efficiency, lifetime, light absorption, impact on the environment, costs of production, and weather dependency. Silicon processing, inkjet printing, vacuum deposition, and evaporation technologies that allow obtaining improved and strengthened materials for solar cell manufacturing are also described. In the case of the widely developed plasma generation field, waste-to-hydrogen technology including both thermal and non-thermal plasma techniques has been discussed. The review aims to draw attention to the problems faced by the modern power industry and to encourage research in this area because many of these problems can only be solved within the framework of interdisciplinary and international cooperation.

Funder

Lublin University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3